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Abstract

This thesis studies orthogonal range searching which is one of the most well-
studied problems in computational geometry[2]. We introduce the Ball Inheri-
tance Search data structure. This data structure requires O(n) space and can
return k points with a query time of O(lgn + k · lgε n) for any fixed constant
ε > 0. We compare the Ball Inheritance Search data structure to the kd-tree.
The kd-tree requires O(n) space and can return k points with a query time of
O(
√
n+ k).

We compare the query time of the two data structures with queries of dif-
ferent shapes. We show that both data structure have both best-case and
worst-case shapes for their queries, and given a search query of their best-case
shape they perform better than their counterpart.

We also look at the performance with a small amount of results. A search
query of the worst-case shape to the Ball Inheritance Search data structure does
not perform that much worse than the best-case shape to the kd-tree, while a
search query of the best-case shape the Ball Inheritance Search performs much
better than a search query of the worst-case shape to the kd-tree. The difference
between the best-case and worst-case shape is least on the Ball Inheritance
Search data structure, and thus it has a more stable performance. Finally we
look at the space usage of the Ball Inheritance Search data structure and how
we are able to leverage performance with space usage.
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Chapter 1

Introduction

“If this goes badly and I make a crater, I want it
named after me!”

— Iain M. Banks, Against a Dark Background

Orthogonal range searching is one of the most fundamental and well-studied
problems in computational geometry. Even with extensive research over three
decades a lot of questions remain. In this thesis we will focus on 2D orthogonal
range searching: Given n points from R2 we want to insert them into a data
structure which will be able to efficiently report which points lie within a given
axis-aligned query rectangle Q ⊆ R2.

Figure 1.1: Example of an orthogonal range query

To motivate the problem, consider a database of vehicles for sale. Each vehicle
has measurable attributes like price, the year the model was released, engine
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size, amount of doors, gasoline consumption in kilometers per liter, size and
maximum speed. Perhaps a buyer is interested in finding cars which cost be-
tween 75, 000 and 95, 000 DKK and can drive between 15 and 20 kilometers
per liter of gasoline. We can see such a search on figure 1.1, where each point
within the gray area represents a car which fits the criteria, i.e. a search on
two parameters is equivalent to finding all points within a 2-dimensional or-
thogonal range query. A point in the graph represents the ID of the car with
which the car can be looked up in the database to find the other attributes of
the car. When performing a search, two attributes are picked and a range for
both attributes is chosen, giving a 2-dimensional search query. We can think of
each car as a point with one coordinate per attribute. Given the ranges of two
attributes we want to find those of the cars in the database which lie within the
search query. In the example on figure 1.1 the search range is the 2d rectangle
[15; 20]× [75, 000; 95, 000] returning three cars as the result.

The objective of this thesis is to study a variety of orthogonal range search-
ing data structures. The main focus will be to introduce the Ball Inheritance
Search data structure. It is a simplification of an orthogonal range searching
data structure by Chan et al. [2], which will be referred to as the Original Ball
Inheritance Search data structure. We are going to describe the kd-tree which
will be the reference data structure in our analysis of the Ball Inheritance Search
data structure. We are going to describe the range tree which shares some of
properties of the Ball Inheritance Search and Original Ball Inheritance Search
data structures.

We will look at the best-case and worst-case range queries for both the
Ball Inheritance Search data structure and the kd-tree. We will show that the
Ball Inheritance Search data structure is able to compete with the kd-tree, and
even strongly outperform the kd-tree in cases where the shape of the query
is a long thin slice through the attribute area. We will look at how resilient
the data structures are to changes in shapes by looking at the best-case shaped
search queries to both data structures compared to the worst-case shaped search
queries. Some of these experiments will be performed with search queries with
a small amount of results in order to emulate actual user interaction. Finally we
are going to explore how much space the Ball Inheritance Search data structure
uses and how we can leverage performance with space usage. We are going to
compare the space of the Ball Inheritance Search data structure to the space of
the kd-tree.

The model of computation used in this thesis is the w-bit word-RAM model
by Fredman and Willard [4]. In the word-RAM model of computation, the
memory is divided into words of w bits. Given a set P of n points with integer
coordinates from a universe [U ] = {0, . . . , U − 1}, we assume a word will have
enough bits to store the integer address of any index into P and enough bits
to store any element from U . Thus, w = Ω(lgn) and w = Ω(lgU). Under
the word-RAM model all standard word operations take constant time. This
includes standard word operation from modern programming languages such
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as integer addition, subtraction, multiplication, division, shifts and the bit-wise
operators AND, OR and XOR. Reading a single word from memory or writing
a single word to memory also takes constant time. The number of bits in a
word is found by the largest element which has to fit into a word. This means
that it is often possible to divide the word into smaller logical blocks which can
fit more than one integer.

Outline. In Chapter 2 we introduce related work. This covers the kd-tree
and the range tree. In Chapter 3 we introduce the primary work of this thesis,
the Ball Inheritance Search data structure, followed by the original work by
Chan et al. [2]. Some implementation specifics are described in Chapter 4. The
experiments performed on the Ball Inheritance Search data structure and its
comparison to the kd-tree will be discussed in Chapter 5. Finally Chapter 6
will be the conclusion.

Notation. The set of integers {i, i+ 1, . . . , j − 1, j} is denoted by [i, j]. When
no base is explicitly given logarithm will have base 2. ε is an arbitrary small
constant greater than 0. Given an array A, A[i] denotes the entry with index
i in A and A[i, j] denotes the subarray containing the entries from i to j in A,
including both A[i] and A[j]. A[1..n] denotes an array A of size n with entries
1 to n. Throughout the thesis the successor of x in a set will be meant as the
smallest number which is greater or equal to x in that set - symmetrically, the
same applies for predecessor of x which is the biggest number less or equal to
x. The work will be done under the assumption that no two points will have
the same x-coordinate and no two points will have the same y-coordinate. This
is a unrealistic assumption in practice, but it can easily be remedied by having
the points lie in a composite-number space since we only need a total ordering
of our points.
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Part I

Theory
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Chapter 2

Related Work

This chapter will describe two well-known static data structures for orthogonal
range searching: the kd-tree and the range tree. The kd-tree is the current de
facto standard for orthogonal range searching because of its low space complex-
ity. It has a space complexity of O(n) and a running time of O(

√
n+k) where k

is the number of results reported. In practice it uses the exact same amount of
words as it holds elements[1]. The range tree uses O(n lgn) words of space and
has a running time of O(lg2 n+ k) without fractional cascading and a running
time of O(lgn+k) with fractional cascading. The difference between the space
complexities of the kd-tree and the range tree is a factor O(lgn) which can
become an issue when dealing with very large datasets and a limited amount
of main memory. This factor can grow big for large datasets and is the reason
why kd-trees are preferred in practice.

The kd-tree will be used as a reference in the comparison against the Ball
Inheritance Search data structure since they have the same space complexity.
This property makes the Ball Inheritance Search data structure quite attractive.
The range tree will be used to show how much the running time can be decreased
by increasing the space complexity by a factor of O(lgn). The range tree will
also be used to introduce some of the ideas behind the Ball Inheritance Search
and Original Ball Inheritance Search data structures, which is where Chan et al.
[2] drew some of their inspiration.

The query time of a search query to the main data structures in this chapter
are all output-sensitive, meaning that their running time depends on the amount
of results found. The data structures themselves are static: After the initial
construction of the data structures they will not be altered by insertions or
deletions.

2.1 kd-trees

The current standard of range reporting using linear space is the kd-tree. This
data structure will be used as a reference point when evaluating the results of
the primary work of the thesis. With linear space it is a fitting data structure
for range reporting on the RAM, and a practical solution. The kd-tree with n
points can be represented as an array A[1..n].
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Figure 2.1: Showing the subdivision of points in a node: First dividing the
points by the x-median, and then by the y-median

A kd-tree is constructed recursively: Given n points, the median of the
points with respect to x is found. All points which has an x-coordinate larger
than the median goes to the right child, while points which has an x-coordinate
smaller than the median goes to the left child. Conceptually the median belongs
to the left child, but in the array implementation the median will be stored in
the middle, between the points going to the left child and the points going the
right child. At the next level the points of each node will be divided in a similar
fashion, this time using the y-median and the y-coordinates instead. This is
shown on figure 2.1. When dividing n points, the median will be chosen as the
dn/2e-th smallest number. Therefore we can think of a node as containing the
line dividing the points given to its left child from the points given to its right
child. Alternating between focussing on the x-coordinates or the y-coordinates
at each level, the points are divided until only one point remains in a node.
This node will then be a leaf containing that point. Thus, we end up with n
leaves. This data structure uses O(n) words of space.

Figure 2.2: The three different situations which can occur between a search
query and the region of a node

In order to search in this tree, we introduce the term region. The region
of the root node is R2. Given a node v with the region R, the region of the
children is R restricted to one side of the splitting line at v. The region of the
left child of v is the left side of R split by the splitting line. The region of
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the right child of v is the right side of R split by the splitting line. The root
contains all points and has the biggest region. Since each node contains a line
dividing its points between both of its children, we can use this line to decrease
the size of the regions of both children. Doing this halves the amount of points
lying within each child region. As shown on figure 2.2, given an axis-aligned
rectangular search query q = [x1, x2]× [y1, y2] and a node v in the kd-tree the
following can occur:

1. The region of the node can be fully contained in the search query, in which
case all of the points stored in the leaves of the subtree rooted at v are
returned as part of the result.

2. The search query can overlap, but not fully contain, the region of the
node v. In this case the search will check each child node of v as to which
of these three cases occur.

3. Finally the region of the node and the search query can have nothing in
common in which case nothing happens and this branch of the search
stops.

The search starts at the root of the kd-tree. In the kd-tree, the root has no
special properties, so it just acts like any given node v. Here all three cases can
occur. If case 1 occurs, all the points of the kd-tree will be part of the result. If
case 3 occurs, the result of the search will be empty and the search will stop. If
case 2 occurs, it will be checked which of the three cases above occurs at each
of the two children of the root. Thus, case 2 is used to travel recursively down
the kd-tree to determine which points will be returned as the result.
If a leaf is visited in the search, the point stored in the leaf is reported as part
of the result if it lies within the search query. Also note that internal nodes of
the kd-tree are the root of a smaller kd-tree.

Given a node whose region is fully contained, the time to report the points
stored in the subtree of that node is linear in the number of points reported.
Thus, it takes O(kv) time to report all the kv points stored in the subtree of a
node v which is fully contained in the search region.

We say that a node visited by case 2 has a non-empty parent. From fig-
ure 2.2, case 1 takes O(kv) time when v has a non-empty parent. From a
non-empty parent, case 3 takes constant time. In order to bound the time of a
search query to the kd-tree, we need to bound the time spend on case 2. For
this, we need to obtain a bound on the amount of nodes visited which are not
fully contained in the search region. These are the nodes where an edge of the
search query passes through their regions. Consider a search query where one
of the edges passes through the region of the root. This edge can be thought of
as infinitely long. Without loss of generality, we pick it to be a vertical line, as
seen on figure 2.3.

We thus want to bound the number of regions of nodes where one of the
query edges passes through. Let Q(n) describe the amount of regions this
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Figure 2.3: Example of a vertical edge through the entire region of the root
node

infinitely long vertical line intersects. In order to bound the amount of regions
intersected by the line, we need to recall how the kd-tree is built. Consider
a region that is intersected by the line. When constructing the kd-tree, this
region is split in one dimension and then in the other dimension, resulting in
four regions for every two levels of the kd-tree. The vertical line can at most
intersect two of these regions. Thus, when a vertical line intersects the region
of a node, it intersects at most two of the four regions of the its descendants
two level down the tree. The running time of a query to the kd-tree with n
points can thus be described by the recurrence:

Q(n) =
{
O(1), if n = 1,
2 + 2Q(n/4), if n > 1

Solving this recurrence gives the solution Q(n) = O(
√
n). Since the vertical

line is infinitely long, it intersects as least as many regions as the edge of a search
query. The vertical line can intersect at most O(

√
n) regions of the kd-tree, This

is an upper bound for the amount of regions a vertical line can intersect, thus
also bounding the amount of regions of nodes the edge of a search query can
pass through. The exact same argument can be made for a horizontal line.

Searching the kd-tree thus takes O(
√
n + k) time to report k points as a

result. When the amount of points reported as result of the search query is
low, the query time per point is relatively high. Another thing to notice is
that there is no time penalty per point reported. Just searching through the
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data structure costs O(
√
n) time, but the time to report points is linear in the

number of points reported.

2.2 Range trees

The range tree is another data structure which supports range queries. The
space complexity of this data structure is O(n lgn). A range query to the range
tree takes O(lg2 n+ k) time to report k points. This time can be optimized to
O(lgn + k) without changing the space complexity using fractional cascading.
We will first look at how the data structure is built and how it is used for range
reporting. Then we will introduce fractional cascading and see how that will
change the query time. With a space complexity of O(n lgn) words this data
structure is not going to replace the kd-tree. Instead the range tree will serve
as a way to introduce some of the ideas behind the Ball Inheritance Search and
Original Ball Inheritance Search data structures.

Consider a balanced binary search tree with n keys for a 1-dimensional query
on the x-coordinates. These n keys are sorted lowest-to-highest in the leaves
of the tree, from left to right. In order to answer the query q = [x1, x2] the
following is done: From the root, travel to the least common ancestor of x1 and
x2. This is the node whose subtree contains both x1 and x2, and x1 lies in the
left subtree and x2 lies in the right subtree. From the least common ancestor,
travel to both x1 and x2. While traveling to x1, the first step is the left child
of the lowest common ancestor of x1 and x2. From here, every time a left child
is chosen as the next step in the path, the subtree in the right child will only
contain points between x1 and x2. The nodes of this entire subtree are reported
as results. Symmetrically, the same is done with the path to x2. When a right
child is chosen as the next step, the nodes of the entire subtree in the left child
are reported as results. In a 1-dimensional search, when a node is the root of a
subtree which only contains points in the search range, the node is said to be
fully contained.

A balanced binary search tree has a space complexity of O(n). Reporting
the points stored in a subtree requires time linear to the amount of points in the
subtree. Travelling from the root to x1 and x2 requires O(lgn) time. Hence,
the query time of a 1-dimensional search query is O(lgn+ k).

Range reporting in a 2-dimensional space on the range tree is done by using
1-dimensional sub-queries where it separates the dimensions. Given a search
query q = [x1, x2] × [y1, y2], it will first find the points which lie in the range
of [x1, x2]. Among those points, it will find the points which lie in the range of
[y1, y2]. This leaves us with all the points lying in the search query.

Doing the first 1-dimensional search is exactly what is accomplished using a
balanced binary search tree. A balanced binary search tree is built to support
range search on the x-axis of all of the points. We will call this tree the primary
tree. Then for each internal node in the primary tree a new balanced binary
search tree is built on the y-coordinates of all points in the leaves of the subtree
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rooted at that node. We call these balanced binary search trees for auxiliary
trees. The primary tree holds pointers to the auxiliary tree for each node.

A range query q = [x1, x2] × [y1, y2] on the range tree is answered in the
following way. From the least common ancestor of x1 and x2, the search travels
down to x1 and x2. On the way to x1 and x2, each node that is fully contained
in [x1, x2] will be flagged. Using the auxiliary tree of each node that is flagged,
a search will be done to find the points in the range [y1, y2].

Each leaf in the primary tree of the range tree stores a point. The height of
a balanced binary search tree containing n points is lgn. Each point p in the
primary tree is only stored in the auxiliary trees of nodes on the path to the leaf
containing the point p. This means that each point p is only stored once per
level in the primary tree. Each auxiliary tree uses space linear to the amount
of points it holds. Thus, the space complexity of a range tree is bounded by
O(n lgn).

The query time for each auxiliary tree that is searched is O(lgn+kv), where
kv is the amount of points that is reported back by the auxiliary tree at the node
v in the primary tree. The amount of auxiliary trees which will be searched is
bounded by the length of the path from the least common ancestor of x1 and
x2 to the leaves containing x1 and x2. This path can at most visit two nodes
per level of the primary tree, and the length is thus bounded by O(lgn). The
query time of a range search in the range tree is then

∑
v

O(lgn+ kv) = O(lg2 n+ k)

where v are the nodes flagged on the path to x1 and x2 from their least common
ancestor.

Fractional cascading can be used to speed up the query time without chang-
ing the space complexity of the data structure. Instead of using a balanced
binary search tree as the auxiliary data structure, we are going to use an array.
This array will contain the same points as the auxiliary balanced binary search
tree did. The points in the array will be sorted by their y-coordinate. At the
node v, each entry in the array Av will contain a point and two pointers. One
pointer will be pointing to an entry in the auxiliary array of the left child of
v, while the other pointer will be pointing to an entry in the auxiliary array
of the right child of v. We call these the left pointer and the right pointer,
respectively. Suppose that Av[i] stores a point p. Then the left pointer at Av[i]
will be pointing to the first entry in the left child’s auxiliary array containing a
point with a y-coordinate greater or equal to py. The same applies to the right
pointer of Av[i], pointing to the right child instead of the left child.

Searching the range tree with fractional cascading starts by finding the least
common ancestor of x1 and x2. At this node, a binary search is done in order
to find the first entry in the auxiliary array which y-coordinate is greater or
equal to y1. At any given node v, we call the position of this entry τv. We walk
from the least common ancestor of x1 and x2 to the leaves x1 and x2, finding all
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Figure 2.4: Example of an fractional cascading

the nodes which are fully contained in [x1, x2]. Each time a left child is visited
on the path to x1 or x2, the left pointer is used to update τ . The entry at
position τv is the first element in Av which is greater or equal to y1. Finding
the index of this element at a child-node is a constant-time operation using the
left pointer. Symmetrically, when a right child is visited on the path to x1 and
x2, the position of τ is updated using the right pointer. This can be seen on
figure 2.4. When a fully contained node is found, we look in the auxiliary array
from the position of τ and kv entries forward in order to report kv points back
as result. This is done by incrementing the position of τ until the point at that
entry is no longer within the range of [y1, y2]. This takes O(1 + kv) time. The
total query time now becomes

∑
v

O(1 + kv) = O(lgn+ k)

where v are the nodes flagged on the path to x1 and x2 from their least common
ancestor.

2.3 Composite-number space
In order to ensure all points have unique x-coordinates and unique y-coordinates,
the points are translated into composite-number space[1]. A composite num-
ber of two numbers x and y is denoted by (x | y). A total ordering on the
composite-number space is defined by using lexicographic order. Given two
composite numbers (x1 | y1) and (x2 | y2), we define the order as

(x1 | y1) < (x2 | y2) ⇐⇒ x1 < x2 or (x1 = x2 and y1 < y2)

Given a set P of n distinct points from R2, we translate each point (x, y) ∈ P
into composite-number space by assigning the point new set of coordinates:
(x, y) := ((x | y), (y | x)). No two points will have the same x-coordinate unless
the points are identical. The same holds for the y-coordinate.
In order to perform a range query q = [x1, x2] × [y1, y2] in composite-number
space, the query will have to be transformed. This transformed range query
will be q̂ = [(x1 | −∞), (x2 | +∞)]× [(y1 | −∞), (y2 | +∞)]. It follows that

(x, y) ∈ q ⇐⇒ ((x | y), (y | x)) ∈ q̂
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2.4 Summary
The kd-tree is a data structure using O(n) words of space and supports a range
query in O(

√
n + k) time. It is built by continually subdividing smaller and

smaller regions of the tree until a region only contains one point. A range search
query will then match the query region to the region of a node to see if there
is any overlap or full containment.

The range tree is a data structure usingO(n lgn) words of space and support
a range query in O(lg2 n + k) time. It is built by constructing a tree with n
leaves and dividing the points to the leaves, such that all the leaves to the left
of a leaf contain points with a smaller x-coordinate than the point at the leaf.
All the internal nodes of the tree contain an auxiliary tree which has the same
property just with the y-coordinate of the points contained in the subtree. This
property allows a search query to quickly locate the subtrees containing only
points between [x1, x2] and [y1, y2]. Using fractional cascasding we can speed
up the query time of the range tree to O(lgn+ k).

The O(lgn+k) running time of the range tree is faster than the O(
√
n+k)

running time of the kd-tree. However, the O(
√
n) part is based on a rather

pessimistic idea that a range query will overlap, but not fully include, a lot of
regions stretching over the two extremities in one dimension. In practice, the
O(lgn) penalty on space is prohibited for most applications and is the main
reason why kd-trees are preferred.
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Chapter 3

Primary Work

“My name?” said the old, and the same distant
sadness came into his face again. He paused. “My
name,” he said, “is Slartibartfast.”
—Douglas Adams, Hitchhiker’s Guide to the Galaxy

This chapter will introduce the Ball Inheritance Search and Original Ball
Inheritance Search data structures. The Original Ball Inheritance Search data
structure by Chan et al. [2] is a tree-like data structure with auxiliary data
structures. It has a space complexity of O(n) and a supports search queries in
O(lg lgn + (1 + k) · lgε n) time, where k is the amount of results reported and
ε is an arbitrarily small constant greater than 0.

The Ball Inheritance Search data structure is a simplification of the Original
Ball Inheritance Search and therefore they have the same underlying data struc-
ture. The Ball Inheritance Search data structure has some different auxiliary
data structures and fewer of them. The data structure has a space complexity
of O(n) and supports search queries in O(lgn + k · lgε n) time, where k is the
amount of results reported and ε is an arbitrarily small constant greater than 0.
Going forward, OBIS will be used as shorthand for Original Ball Inheritance
Search and BIS will be used as shorthand for Ball Inheritance Search.

The BIS data structure has a time complexity of O(lgn+ k · lgε n) which is
greater than the time complexity of the OBIS data structure with O(lg lgn +
(1 + k) · lgε n). However, the BIS data structure is far more simple - both in
code and the auxiliary data structures used. The difference between the running
time constant hidden in O(lg lgn) and O(lgn) is far greater than the difference
between lg lgn and lgn. This makes the BIS data structure faster than the
OBIS data structure in practice.

Each section will start with a preliminaries subsection. This subsection
will describe some of the auxiliary data structures used in the section. As in
Chapter 2, the main data structures in this chapter are static and the query
time of the range queries are output-sensitive.
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3.1 Ball Inheritance Search

This section will introduce the primary work of this thesis. It will show how
the BIS data structure is built and how range reporting is done using the data
structure. The data structure uses O(n) space and supports search queries in
O(lgn+ k · lgε n) time. This is the same space complexity as the kd-tree. The
query time is different in that O(lgn) is smaller than O(

√
n), but there is a

cost of O(lgε n) per point reported.
The BIS data structure relies heavily on the ball-inheritance data structure.

The ball-inheritance structure is a tree with n labelled balls at the root. In lgn
steps it will distribute the balls from the root of the tree to n leaves in the tree.
Solving the ball-inheritance problem is to follow a ball from any given node to
its leaf. We formally define the problem below in section 3.1.1. Succinct rank
queries are an important part of data structure, playing a key role in solving
the ball-inheritance problem.

The BIS data structure supports search queries in a manner similar to the
range tree. A balanced binary search tree is used to locate the subtrees which is
fully contained in [x1, x2]. From here the range tree uses balanced binary search
trees or fractional cascading to locate which of those points are in [y1, y2], while
the BIS data structures uses the ball-inheritance structure to decode the y-ranks
to actual points. The OBIS data structure will also use a balanced binary search
tree, but only to locate the least common ancestor of x1 and x2. From here it
will perform ball-inheritance queries to find the points within [x1, x2]× [y1, y2].

3.1.1 Preliminaries

Rank Space Reduction

Given n points from a universe U , the rank of a given point in a sorted list of
points is defined as the amount of points which precedes it in the list. Given
two points a, b ∈ U : a < b iff rank(a) < rank(b). Expanding this concept to
2 dimensions we have a set P of n points on a U × U grid. We compute the
x-rank rx for each point in P by finding the rank of the x-coordinate among all
the x-coordinates in P . The y-rank ry finds the rank of y-coordinate among all
of the y-coordinates in P . Using rank space reduction on P , a new set P ∗ is
constructed where (x, y) ∈ P is replaced by (rx(x), ry(y)) ∈ P ∗. Given a range
query q = [x1, x2]×[y1, y2], a point (x, y) ∈ P is found within q iff (rx(x), ry(y))
is found within q∗ = [rx(x1), rx(x2)] × [ry(y1), ry(y2)]. Computing the set P ∗
from P using rank space reduction, P ∗ is said to be in rank space. While the
n points could be represented by lgU bits in P , they can now be represented
by lgn bits in P ∗ with lgn � lgU when n � U which saves memory. Given
n points from U we can translate them to rank space by inserting them in
an array A[1..n] and sort A. The index of a point in A is now its rank. In
order to translate a search query q = [x1, x2] to rank space, we will look up the
successor of x1 in A and the predecessor of x2 in A. The indices of these two
points delimits the search query in rank space. The array A acts as a mapping
to and from rank space. When a rank space reduction has been applied and
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there exists an array A[1..n] mapping the elements to and from rank space, the
algorithms used will only use RAM operations on integers of O(lgn) bits.

Predecessor search using binary search

In order to find the rank space successor or rank space predecessor of a point,
a binary search is used on a sorted array of points. This data structure uses
O(n) space and have a query time of O(lgn). By locating the first key in the
array that is greater than or equal to the search query, the index of that key is
the rank space successor. Similarly, by locating the last key that is smaller in
the array, the index of that key is the rank space predecessor.

Succinct rank queries

Consider an array A[1..n] with elements from some alphabet Σ. Given an index
i in the array, we can report how many elements in A[1..i] are equal to A[i].
This is called a rank query. Thus, the function is rank(k) = Σi≤kA[i]. We want
to be able to compute a rank query in constant time using a data structure of
O(n lg Σ) bits. In order to do this, checkpoints are created. For each character
in the alphabet Σ, the checkpoint contains the number of times that character
appears in A[1..i], where i is the checkpoint location. Such a checkpoint takes
up O(Σ lgn) bits of space. By placing the checkpoints Σ lgn entries apart of
each other, all of the checkpoints use O( n

Σ lgn · Σ lgn) = O(n) bits of space.

Each entry in A contains a character from the alphabet Σ. At A[i] we also
store the amount of times the character at A[i] occurs since the last checkpoint.
This is a smaller number and can be stored using O(lg(Σ lgn)) bits per entry
in A. This is because we only need lg x bits to store a number which has
a maximum value of x − 1. This approach fits the required space bound if
Σ ≥ lgε n, because there Σ will dominate the complexity. Hence, storing n
entries uses O(n · lg(Σ lgn)) = O(n · lg Σ) bits. Working under the word-RAM
model of computation, we are able to pack the n integers into n · lgm bits,
where m is the maximum number which needs to be stored.

Ball Inheritance

The input to the ball-inheritance problem is a perfect binary tree with n leaves
and n labelled balls at the root. The balls have been distributed from the root
to the leaves in lgn steps. All balls are mapped to distinct leaves and follow the
path from the root to that leaf. Following this path from a node to its child, we
say that a ball is inherited by that child. The balls at the root are contained
in an ordered list, and they will retain this order at all internal nodes. Each
node thus has an associated list of those balls passing through it. The level of
a node is defined to be the height of the node from the leaves. The root has the
highest level, while each node is one level smaller than its parent. The leaves
are at level 0. Each level of the tree contains the same amount of balls, and at
level i each node contains 2i balls. Eventually each ball reaches a leaf of the
tree and each leaf will contain exactly one ball. A ball can be identified by a

19



node and the index of the ball in the list of that node. Given the identity of a
ball at any level, it is possible to follow this ball down the tree to a leaf. The
goal is to track a balls inheritance from a given node to a leaf and report the
identity of the leaf. We call the identity of the leaf the true identity of a ball.

3.1.2 Solving the ball-inheritance problem

Consider an input to the ball-inheritance problem, i.e. a perfect binary tree
with n leaves and n balls following root-to-leaves path. At level m, each node
has a bit vector Av[1..2m] used to indicate which of its children a ball is inherited
by: If Av[i] is 0 it means that the ball at index i in that node’s list is inherited
by the left child and 1 means that it is inherited by the right child. The identity
of a ball is a node and an index into the list of that node. Given a node v and
an identity of a ball, we can now calculate the ball’s identity in the child node
which inherits the ball. The node can answer the query rankv(k) = Σi≤kAv[i].
If a ball is inherited by the right child node its new identity at that node is
rankv(i) because that is how many 1s that precede it in the current node, and
thus the number of balls inherited by the right child that precedes the ball in
the ball-ordering. If a ball is inherited by the left child node the new identity
is then i − rankv(i). With this information it is possible to traverse down the
tree following a ball from any given node to a leaf. There are n balls per level
represented by the bit vectors of the nodes on that level. Each level in the tree
uses O(n) bits to store the bit vectors. This adds up to O(n lgn) bits, or O(n)
words in all. This trivial solution to the ball-inheritance problem uses O(lgn)
query time, given that it follows a ball O(lgn) steps down to its leaf. The rank
function is a constant time query as described in section 3.1.1 about succinct
rank queries.

Faster Queries

In the solution above, a bit vector is an array with entries from the alphabet
Σ = {0, 1}, where each entry is used to indicate whether a left or right child has
been chosen to inherit a given ball. By expanding the alphabet we can point to
the children’s children, Σ = {0, 1, 2, 3}, the children’s children’s children, Σ =
{0, 1, 2, 3, 4, 5, 6, 7}, and so forth. Expanding the alphabet will use O(n lg Σ)
bits per level. Storing a pointer for each ball from level i to level i+∆ increases
the storage space by ∆ bits per ball, but also enables the ball to be inherited
by 2∆ descendants. By expanding the alphabet the query time can be lowered
since it is possible to take bigger steps down the tree. Just like with a parent-
to-child step, bigger steps are supported by succinct rank queries. In order
to determine the identity of a ball b at Σ levels below, we need to know the
destination node and how many balls before b chose the same destination node.
Using succinct rank queries to determine the rank of a ball Σ levels down is
thus a constant time query.

Using this concept, we pick B such that 2 ≤ B ≤ m, where m = lgn is the
height of the tree. All levels that are a multiple of Bi expand their alphabet
such that the balls can also reach Bi levels down. If a target level does not exist,
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the ball points to its leaf. We need at most visit B levels that are multiple of
Bi before reaching a level that is multiple of Bi+1, making it possible to jump
down the tree with bigger and bigger steps. This gives us a query time of
O(B lgB lgn) because we need at most B jumps at most O(lgB lgn) times.

Storing the expanded alphabets at each level that is a multiple of Bi costs
Bi bits per ball. The total cost is then

lgB lgn∑
i=1

lgn
Bi
· O(Bi) = O(lgn · lgB lgn) (3.1)

bits per ball, summed over all levels. With n balls, this is O(n lgB lgn) words
of space with query time of O(B lgB lgn). If we pick a B ≥ lgε n we can
reduce lgB lgn to lglgε n lgn = 1

ε . Thus, the space complexity for the ball-
inheritance data structure is O(1

ε · n) = O(n) words of space. By picking
B = lgε/2 n = Ω(lg lgn) we can upper bound the query time as follows:

O(B lgB lgn) = O(B lg lgn) = O(lgε/2 n · lg lgn) (3.2)
= O(lgε/2 n · lgε/2 n) = O(lgε n)

The ball-inheritance problem can thus be solved in O(lgε n) time using O(n)
words of space for an arbitrary small constant ε > 0. The upper limit of lgB lgn
in equation 3.1 and equation 3.2 is chosen because that is the largest i where
Bi ≤ lgn.

3.1.3 Solving range reporting

Consider a perfect binary tree with n leaves. The root contains n points in 2-d
rank space. The elements in the ball-inheritance structure are points, so the
words ball and point can be used interchangeably. The n balls at the root of
the tree are sorted by their y-rank. When distributing the balls for inheritance,
a node will give both its children half of its balls: the lower half sorted by
the x-rank to its left child and the upper half by x-rank to its right child.
The order of the balls in a child node will be the same as the parent node.
The actual coordinates of the balls are only stored at the leaves. This is how
the ball-inheritance data structure was described in the previous section. The
ball distribution has been specified. With this distribution, some facts about
the tree can be stated. We know that the x-coordinates of the balls in the
leaves are sorted from left to right - smallest to highest. The way the balls are
distributed from the root, the x-coordinates are responsible for the inheritance
path. Because the nodes are sorted by their y-rank in the root node and that
they keep this order, the balls in a node list at any given node is ordered by
their y-rank. These two facts will be used to solve the range reporting.
Since the actual coordinates of the points are only stored once, this data struc-
ture uses linear space.

Given a range query q = [x1, x2]× [y1, y2] the rank successors of x1 and y1
and the rank predecessors of x2 and y2 are looked up. We know that a range
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query can be translated to a rank space query. We call these x̂1, ŷ1, x̂2 and ŷ2.
We now have our query q in rank space: q̂ = [x̂1, x̂2]× [ŷ1, ŷ2]. We use x̂1 and
x̂2 to find the least common ancestor of x̂1 and x̂2, LCA(x̂1, x̂2). The subtree
rooted at this node contains at least all the points with an x-coordinate between
x1 and x2.

At the root of the BIS data structure we mark the positions of ŷ1 and ŷ2
on the bit vector. This range indicates which balls lie in the range [y1, y2]. iv
and jv will denote this range in the bit vector of the node v. When searching
for points which lie within this range, a node will update this range to fit its
children. The updated range at the left child l will be il = iv − rankv(iv) and
jl = jv−rankv(jv). The updated range at the right child r will be ir = rankv(iv)
and jr = rankv(jv). This is the same way the rank query was used in sec-
tion 3.1.2. Now instead of just following a given ball, we keep track of a range
of balls. This concept is seen on figure 3.1.

1 0 0 1 1 1 0 0

1 0 1 0 0 1 0 1

start

start start

end

end end

Figure 3.1: Example of nodes inheriting their bit vector ranges from their par-
ent.

Traversing from the root to the LCA, this y-range will be maintained ac-
cordingly. We know the positions of the leaves containing x̂1 and x̂2 so we
can traverse from the LCA down to each of them. Traversing to x̂1, the first
stop is the left child of the LCA. From here, each time a node selects its left
child as the path to x̂1 we know that the subtree contained in the right child
only contains points with x-coordinates between x1 and x2. Symmetrically, the
same applies when going right from the LCA: Each time a node selects a right
child on the path to x̂2 the subtree contained in the left child only contains
points between x1 and x2. Such a subtree is said to be fully contained. When
a subtree is fully contained, we also say that the node at which the subtree is
rooted is fully contained. This concept is seen on figure 3.2. This is the same
concept used with the range tree.
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Figure 3.2: Traversing left from the LCA, each right subtree contains x-
coordinates between x1 and x2. Traversing right from the LCA the same holds
for left subtrees. Dotted line represent the path from the lowest common an-
cestor of x1 and x2 to x1 and x2
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Each time a fully contained node v is found, we want to follow all the balls
lying in the y-range of the root of the subtree rooted at v to their leaves. This is
exactly what the solution to the ball-inheritance problem provides: We are given
a list of ball identities and want to find which leaf stores the actual coordinates
of the point we are looking for. Finding the coordinates of a ball takes O(lgε n)
time per ball. The O(lgε n) thus describes, and bounds, how many jumps are
needed from a node to a leaf.

The range tree from section 2.2 and the BIS data structures have some
similarities. A range tree have a 1-d binary tree over the x-coordinates and an
auxiliry data structure to look up the y-coordinates of fully contained nodes.
We can think of the range reporting of the BIS data structure in terms of
how the range tree works. Conceptually, there is a 1-d binary tree over the
x-coordinates in the BIS data structure. When a fully contained node is found
from the least common ancestor of x1 and x2, the ball-inheritance structure
is used as the auxiliary data structure to decode the location of the leaf by
using the rank of the y-coordinate. So in essence, the range tree and BIS data
structure are quite alike, just with a different auxiliary data structure.

The actual coordinates of the points are only stored at the leaves which then
takes up O(n) words of space. The rest of the tree contains lgn levels of bit
vectors of n bits taking O(n lgn) bits, O(n) words. Looking up the rank-space
predecessor and successor of x1, x2, y1 and y2 using a simple binary search at
the root requires O(n) space and O(lgn) time. Summing it up, the entire data
structure uses O(n) words of space.

Walking from the root to the LCA requires O(lgn) steps. Walking to x̂1
and x̂2 from the LCA requires O(lgn) steps each. Visiting each of the k leaves
in the subtrees between x̂1 and x̂2 which stores the points that will be reported
as a result, takes O(k · lgε n) time. This adds up to O(lgn+k · lgε n) query time
to report k points as results.

3.2 Original Ball Inheritance Search

This section describes the OBIS data structure. While the theoretical work of
this thesis is a simplification of this data structure, the OBIS can also be viewed
as an extension of the BIS. The OBIS data structure will not be implemented,
but serves as a theoretical background for the BIS. The main property the BIS
and OBIS share is that the underlying data structure is the ball-inheritance
data structure and solving the range reporting heavily relies on solving the
ball-inheritance problem.

Utilizing the ball-inheritance structure, Chan et al. [2] propose a theoret-
ically better solution for orthogonal range search queries than the one of the
Ball Inheritance Search data structure:

Theorem 2.1 for any 2 ≤ B ≤ lgε n, we can can solve 2-d orthogonal range
reporting in rank space with O(n lgB lgn) space and (1 + k)O(B lg lgn) query
time.

In this section some supporting data structures will be introduced. Then
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we will show how the ball-inheritance is used in conjunction with these data
structures to find the points within a search query q = [x1, x2]× [y1, y2].

3.2.1 Preliminaries

Range minimum queries

In order to find the smallest element in a range, a succinct data structure will
be used. This data structure can solve the range minimum query problem
and will be referred to as RMQ. Consider an array A with n comparable keys,
this succinct data structure allows finding the index of the minimum key in
the subarray A[i, j]. Fischer [3] introduces a data structure which solves this
problem in 2n+O(n) bits of space with constant query time. The construction
requires that the array is ordered, which we will see fits into our scheme. Note
that O(n) is less than the bits needed to store A. Thus, only the index of
the minimum key in A[i, j] can be returned, not the actual key. Using the
range minimum query data structure, we can build a range maximum query
data structure. This is a range minimum query data structure on the mirrored
input, i.e. the biggest element becomes the smallest.

Rank space predecessor search

In order to look up the rank space predecessor of a given coordinate, another
succinct data structure will be used. Given a sorted array A[1..n] of ω-bit
integers, predecessor search queries in O(lgω) time is supported using O(n lgω)
bits of space with oracle access to the entries in the array. Since O(n lgω) bits of
space is not enough to store n ω-bit integers, the data structure will only store
part of each n elements and defer the look-up operation to an oracle machine.
For this purpose a Patricia trie [5] is used to store some parts of the n ω-bit
integers and find which entries in the array A which has to be looked up by
the oracle machine. The oracle machine is some data structure that, given an
index i, can return A[i].

Finding the lowest common ancestor

In the Ball Inheritance Search, the lowest common ancestor of x1 and x2 was
found by following the path from the root of the tree to both x1 and x2. The
last node both paths shared was then the lowest common ancestor. This way
of finding the lowest common ancestor takes O(lgn) time which is too big for
the Original Ball Inheritance Search. In order to look up the lowest common
ancestor of x1 and x2 in constant time, we are going to look at the binary
representation of x1 and x2. First we look at x1 ⊕ x2. The number of zero bits
from to the start to the first one bit describes the amount of nodes the two paths
have in common. We denote this number b. This will tell us to look on level
lgn − b. The number that the first b bits of x1 describes is the identity of the
lowest common ancestor of x1 and x2 on level lgn− b. Modern machines have
an instruction for finding the most significant set bit of a number in constant
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time. Thus, the lowest common ancestor of x1 and x2 can be found in constant
time.

3.2.2 Solving range reporting

With a solution to the ball-inheritance problem, Chan et al. [2] propose the
following:

Lemma 2.4 if the ball inheritance problem can be solved with space S and
query time τ , 2-d range reporting can be solved with space O(S + n) and query
time O(lg lgn+ (1 + k) · τ).

The ball distribution scheme of this data structure is the same as the Ball
Inheritance Search of section 3.1.2. Having distributed the n points from the
root to the leaves, additional data structures are required in order to answer
the range queries. For each node in the tree that is a right child a range min-
imum query structure is added. The indices are the y-rank and the keys are
the x-rank that the given node contains. A range maximum query structure is
added to all the nodes which are left children. Each RMQ data structure uses
2n +O(n) bits, making it O(n) bits per level of the tree and O(n lgn) bits in
all - i.e. O(n) words of space.

In order to support predecessor (and successor) search for the y-rank in the
data structure, the rank space predecessor search data structure is added to the
tree. This data structure works on an array of the y-ranks, which is already
sorted. The points in rank space of O(lgn) bits will use O(n lg lgn) bits per
level, with ω = lgn, and O(n lgn lg lgn) bits in all, which is O(n lg lgn) words.
In order to reduce this to linear space we will only place this predecessor search
structure at levels which are multiples of lg lgn. When using the predecessor
search from the lowest common ancestor of x̂1 and x̂2, LCA(x̂1, x̂2), we go
up to the closest ancestor node which has a predecessor structure in order to
perform the search there. Searching takes O(lg lgn) time plus O(1) queries
to the ball-inheritance structure. The ball-inheritance structure is exactly the
oracle machine that the rank space predecessor search needs: At any given node
the balls are sorted by their y-rank and given the identity (the index) of a ball
at that node, it can look up the y-coordinate by decoding the y-rank to a leaf
storing a point. Using the ball-inheritance structure we walk at most lg lgn
steps down while translating the ranks of y1 and y2 to the right and left child
of LCA(x̂1, x̂2).

The reason why this structure is necessary for the y-ranks and not the
x-ranks, is because of the way the points have been distributed in the ball-
inheritance tree: From left to right, the leaves have x-rank 1, 2, ..n so we can
easily locate a given range in the x dimension, but in order to keep track of
the y-dimensional range we need to follow the balls down the ball-inheritance
structure. Adding this structure to each lg lgn level saves us from going all the
way from the root down to the LCA.
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In order to use this data structure to report points in the range of q = [x1, x2]×
[y1, y2] we follow these steps:

1. We find the rank space successor of x1 and the rank space predecessor of
x2. We call them x̂1 and x̂2. We use these to find the lowest common
ancestor of x̂1 and x̂2, LCA(x̂1, x̂2). This is the lowest node in the tree
whose subtree contains at least all the points between x1 and x2. By
knowing x̂1 and x̂2, finding the lowest common ancestor is a constant
time operation.

2. From the least common ancestor of x̂1 and x̂2, we walk at most lg lgn
steps up to find the nearest parent with a predecessor search structure for
the y-rank. We then translate y1 and y2 into rank space coordinates. We
then walk down to the LCA again while maintaining the ŷ1 and ŷ2 at each
step. The rank space coordinates are then translated into both the left and
right child of the LCA. At each of the two children of the least common
ancestor, this range indicates which balls have a y-coordinate between y1
and y2, i.e. which leaves that stores a point with a y-coordinate between
y1 and y2. This step is illustrated on figure 3.3

3. We now descend into the right child of LCA(x̂1, x̂2) and use the range
minimum query structure at this node to the find the index m (the y-
rank) of the point with the smallest x-rank in the range [ŷ1, ŷ2]. The
y-rank of a point at a node is exactly the identity of the ball going to the
leaf storing the point. Knowing the identity of the ball we can use the
ball-inheritance structure to follow the path to the leaf to find the actual
x-coordinate of the point. If the x-coordinate is less or equal to x2 we
return the point as a result and recurse into the ranges of [ŷ1,m− 1] and
[m + 1, ŷ2] in order to find more points. Otherwise we terminate. When
this is done we apply the same concept to the left child of LCA(x̂1, x̂2)
using the range maximum query to find points greater or equal to x1.

The time complexity of step 3 depends on the use of the ball-inheritance
structure. The time to traverse this structure is dependent on the improvements
made in 3.1.2. An empty range will result in two queries, one query to each child
of LCA(x̂1, x̂2). In the worst case the amount of queries to the ball-inheritance
structure at each child of the least common ancestor will be twice the number
of results found at that child plus one. Each time a result is found, a recursion
is made to both the left and right subrange of that result. If one of the sides
constantly fails to find a result, at most two queries are made for each result
found. For the final result found, two ranges are recursed into which reports no
results.

Conceptually, LCA(x̂1, x̂2) describes a point between x1 and x2, more pre-
cisely a point with an x-coordinate greater than all the points in the left child
and smaller than all the points in the right child. Step 3 selects points that are
in the range of [y1, y2] moving outwards from the point of LCA(x̂1, x̂2), always
picking the point closest to LCA(x̂1, x̂2) in its decreasing y-range. We can see
an example of how step 3 works on figure 3.4. Looking at the right child of the
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Figure 3.3: Illustration of how step 2 of the OBIS works.

figure, the leftmost point in the range [ŷ1, ŷ2] will be found first. If that point
has an x-coordinate less or equal to x2 it will be part of the result. Then we
recurse into the ranges [p7, p8] and [p9, p9]. When the leftmost point in a range
has an x-coordinate which is greater than x2 then all other points in that range
will also have an x-coordinate greater than x2. Thus, the recursion in that
range stops. Symmetrically, same applies for the left child of the least common
ancestor.

Going back to Lemma 2.4, we see that the time complexity fits: O(lg lgn)
time is used for the predecessor search and O((1+k)·τ) time is used for walking
from the children of the LCA to the leaves solving the ball inheritance problem
for the k results. This gives a query time of O(lg lgn+ (1 + k) · lgε n) to report
k points as results.
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Figure 3.4: Illustration of how step 3 of the OBIS works. The dotted line
divides the points in the left and right child of the least common ancestor.
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3.3 Summary

The BIS and OBIS data structures both uses O(n) words of space. Both rely
heavily on the ball-inheritance data structure in order to store and retrieve the
actual coordinates of points. Both data structures support retrieval of points
through the ball-inheritance data structure in O(lgε n) time. The main differ-
ence between the BIS data structure and the OBIS data structure is the rest of
the query time: O(lgn) for the BIS and O(lg lgn) for the OBIS. The OBIS data
structure relies on more auxiliary data structures of greater complexity than
the BIS data structure. Thus, the theoretical running time of a range query to
OBIS is smaller than a range query to the BIS. In practise, it is safe to assume
a range query to the BIS is faster than a range query to the OBIS. With much
more code to be executed and using more advanced auxiliary data structures,
the running time constant hidden in O(lg lgn) can be quite large. Also, the
factor between lgn and lg lgn is not that big. Given a very large dataset of
264 elements as input, lg 264 = 64 and lg lg 264 = 6, which has a factor ∼ 10
difference.

Both the BIS data structure and the kd-tree use O(n) words of space. This
is an attractive property when working on the RAM. Like all the main data
structures mentioned in this thesis, the kd-tree and BIS data structure are
output-sensitive. A range query to the kd-tree has a running time of O(

√
n+k)

and a range query to the BIS data structure has a running time of O(lgn +
k · lgε n). When n grows, O(

√
n) grows at a faster rate than O(lgn). For each

point reported as a result from a range query to the BIS data structure there
is a cost of a factor O(lgε n) while each point reported as a result from a range
query to the kd-tree has a cost of a factor O(1). The O(

√
n) running time of

the range query to the kd-tree is due to a pessimistic idea that a range query
will overlap, but not fully include, a lot of regions in the kd-tree. So dependent
on the shape of the range query to the kd-tree, the running time can vary a
lot. The O(lgn) part of the range query to the BIS data structure is due to
the initial binary search and to follow the path from the root of the tree to x1
and x2. Thus, the running time of a range query to the BIS data structure will
behave more stable (fluctuate less) than the running time of a range query to
the kd-tree.

Another aspect of range querying is testing for emptiness. Given a range
query q = [x1, x2] × [y1, y2], an emptiness test to a data structure will either
answer “yes” or “no” to whether the range query contains any points. Thus,
a range query can stop the moment a single result is found. The BIS data
structure will be able to determine emptiness of a range query with no ball-
inheritance queries. Hence, an emptiness query to the BIS data structure can
be checked in O(lgn) time. The initial binary search to find the rank space
query might indicate that there are no points in [x1, x2] or [y1, y2]. If either
of the two rank space ranges are empty, the range query will also be empty.
If the initial binary search does not indicate an empty range, the range query
will continue normally. The moment a query to the ball-inheritance structure
is made, the range is not empty and the emptiness test can report back without
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doing the actual ball-inheritance query. An emptiness query to the kd-tree can
checked in O(

√
n) time. The same argument as before applies: The query might

overlap with a lot of regions which it does not fully contain, and within those
regions none of the points are within the range. On the other hand, when a
fully contained region is found the emptiness test can report back with a result.
Given a range query [x1, x2]× [y1, y2], the BIS data structure will have a more
stable running time for its emptiness test than the kd-tree. The running time
of a query made to the kd-tree will fluctuate a lot depending on the shape of
the query.
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Part II

Practical

33





Chapter 4

Implementation

This chapter will explain some of the choices made as to the implementation of
the BIS data structure.

4.1 Language

C++11 was chosen to implement the BIS data structure and the kd-tree.
C++11 is a recent release of C++. C++11 combines the advantages of a
modern programming language with the stability and support of a mature lan-
guage which have been around for more than three decades. C++11 was chosen
for several reason: It does not have garbage collection, it is a high level lan-
guage with support for low level operation and contains libraries for everything
needed in this project. The chrono header gives access to a high resolution
clock to measure time. The vector class of the standard template library is
very straight-forward container to work with and the underlying structure is a
continuous block of memory making it ideal for cache purposes. The algorithm
header gives access to convenience functions for generating and sorting data.
The random header gives access to random numbers through a Mersenne twister
engine with uniform integer distribution. The random numbers are used to gen-
erate the input data for the two data structures, thus giving a different data
set every time. The data set is generated by two lists containing the numbers
[0, n − 1] and using the standard library’s shuffle function with the Mersenne
twister engine.

4.2 Design choices

The theory describes the ball inheritance data structure as a binary tree with
internal nodes and leaves. Each node has a bit vector representing the ball
inheritance. In practice all the bit vectors at each level have been concatenated
together to one, resulting in lgn bit vectors in all. Instead of being an actual
entity, a node is just defined as which level it is from, where on that levels list
its bit vector starts and how many balls its bit vector holds. Thus, a vector
of bit vectors represents the ball inheritance tree. Since each ball only uses a
single bit per level there would have been a lot of space wasted when nodes
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only held two or four balls in their bit vectors. By having a single unified bit
vector per level we can pick one data type to work with independent of how
many balls needs to be stored per node. The data type chosen is an unsigned
fixed width integer type of 32 bits.

We are going to describe how to support constant-time succinct rank queries
for a unified bit vector. First a checkpoint is added to every 32nd entry storing
the amount of 1s seen in the bit vector so far. Since the bit vectors consist of
entries of either 0 and 1 we only need count the amount of 1s. The rank of an
entry with index i storing a 1 bit is exactly the amount of 1s between index 11

and i. The rank of an entry with index i storing a 0 bit is i subtracted by the
amount of 1s between index 1 and i. This is because we know that an entry not
storing a 1 bit must be storing a 0 bit. A table is computed which given a 16 bit
unsigned integer is able to answer how many 1 are in the binary representation
of the integer. The table is a flat array and supports look-up in constant time.

Given an index i in the bit vector, the closest checkpoint previous to i is
found. The data type storing the bits in the bit vector is a 32 bit unsigned
integer. We can thus only retrieve data from the bit vector in blocks of 32 bits.
We use a binary and to mask away the bits after i and divide the 32 integer
into two 16 bits integers. Using the precomputed table from before, we look up
how many 1s the binary representation of the two 16 bit integer contain. The
sum of the major checkpoint and the two table look-ups is the amount of times
a 1 occurs before index i in the bit vector.

However, we are seldom interested in knowing how many 1s there are in a
bit vector between index 1 and i. We want to know how many 1s there are
between j and i, where j is the start position of a node and i is an entry in
that node. We know that with the ball inheritance structure, each node gives
each of its children half of its balls. Thus, half of the entries in the bit vector
of a node are 1s. And thus, if j is the start position of a node in the unified
bit vector, there will be j

2 entries in the bit vector between 1 and j which are
1s. Since one of the ingredients for a virtual node is the start position in the
unified bit vector, we already know j when looking up the rank of i. Using the
unified bit vectors instead of an actual tree then poses no problems.

The source code for the BIS data structure will be made available online at
http://www.madsravn.dk/BIS.

1Arrays are 1-based
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Chapter 5

Analysis

“The trouble with writing fiction is that it has to
make sense, whereas real life doesn’t"

— Iain M. Banks

The purpose of this chapter is to compare the BIS data structure to the kd-
tree. We are going to perform a variety of experiments on the BIS data structure
and the kd-tree in order to determine the run-time properties of both, mainly
looking at when the BIS data structure performs better than the kd-tree.

When performing the experiments, random data will be generated and given
as input to the data structures. Both data structures will be given the same
random data. This way they operate on the some data and the comparison will
be fair. The random data is generated by making two lists, X and Y with the
integers [0, n− 1] and shuffling them both randomly. The n points given to the
data structures as input are found by taking the ith entry of both X and Y and
generating a point with those coordinates. This ensures that all x-coordinates
are unique and all y-coordinates are unique. When running a specific experi-
ment, different data sets will be generated and given as new input to the data
structures such that an experiment is not only performed on a single data set.
The different experiments will check how the shape of a given search query
impacts the running time of the query to the data structures. When the shape
and size of the search query has been determined, the search will performed
with a different displacement on the x-axis and y-axis such that the queries are
performed all over the data structure and not only in a best-case or worst-case
position. The search query is performed a lot of times and then the average
time per query is returned.

We are mainly going to focus on two different kinds of experiments. First
we are going to test how a search query shaped like a square performs in both
the BIS data structure and the kd-tree. This type of query will be good for the
kd-tree since it will get to fully include many regions. In the second experiment
the configuration of the search query is going to one where the worst-case sce-
nario for the kd-tree happens. It will cover the entirety of the search area in
a thin slice either in a vertical or horizontal direction. In the third section we
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are going to look closer at how much better the search query to the BIS data
structure compares to the search query to the kd-tree when the search query is
a vertical or horizontal slice and k ≤ 200. The limit of 200 is chosen because
it is small and a reasonable upper bound on the amount of results for human
interaction.

The experiments have been performed on data structures with data sets of
size 2lgn where lgn = [17, 25]. 17 was chosen as the smallest because it would
still be big enough to show something interesting on the graphs. 25 was chosen
because the current initialization of the BIS data structure requires a bit of
work and thus takes up nearly all of the main memory. Future work includes
an idea for a faster and less memory requiring setup phase.

In all the experiments we have chosen B = d1
2 lg

1
3 ne. Recall from sec-

tion 3.1.2 that we must have B = Ω(lgε n) to obtain linear space. Thus, we
have chosen ε = 1

3 . Section 3.1.2 also states that B is responsible for the big
jumps in the ball inheritance structure: where the jumps should be placed and
how big they should be. Unless otherwise stated the graphs in this chapter
show results from a BIS data structure configured with B = d1

2 lg
1
3 ne. When

n ∈ [217, 225], B will be 2. We will use the variables k and size interchangeably
in this analysis. The reason for this will be explained later.

The experiments were performed on a machine with an Intel i7-3770 CPU
with 3.40GHz and with 32 GB RAM. The machine was running Ubuntu 14.04.2
LTS with clang version 3.4. The machine was provided by MADALGO.

5.1 Square search queries
This section will show the running time of square search queries to both data
structure. With this configuration we expect to see that kd-tree performs better
than the BIS data structure. We are interested in seeing just how much worse
the BIS data structure performs.

5.1.1 Setup

The kd-tree has a query time of O(
√
n + k). The

√
n part is based on a pes-

simistic notion that an edge of a query will pass through the entire search area
of the kd-tree. This is not always the case. We also note that when k >

√
n,

k will dominate the expression and thus the query time will be linear in the
output size. In order to fairly compare the running time of a search query to
both data structure, we are going to generate queries finding the points within
a rectangle with the area of

√
size ·

√
n ×
√
size ·

√
n where size will increase.

As previously described, this search query will be made with random displace-
ments in order to query arbitrary places in the structures. So given two random
numbers x and y a query will be q = [x, x+

√
size ·

√
n]× [y, y+

√
size ·

√
n]. A

query of this shape will not invoke the worst-case scenario for the kd-tree and
will thus give an idea of how the BIS data structure performs in contrast to the
kd-tree under circumstances where the kd-tree performs well. We thus expect
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the kd-tree to perform better than the BIS data structure in this experiment.

The points generated for the data structures lie in the range of [0, n− 1]×
[0, n − 1], which gives an area of n2. If the search query has an area of A,
each point has a A

n2 chance of being in that search query. With n points we
thus expect to find n · A

n2 points in a search query with the area of A. In this
experiment we set A =

√
n ·
√
size×

√
n ·
√
size, where n is constant to the data

structure and size will increase during the experiment. We then expect to find
n · A

n2 = n·n·size
n2 = size points. This obviously depends a lot on how the points

are distributed in that specific case. When generating 10 different data sets
for the data structures in the experiments and picking the displacements for
the search query at random each search, we will expect the average amount of
points returned by the search query q = [x, x+

√
size ·

√
n]× [y, y+

√
size ·

√
n]

to be size.

5.1.2 Data

On figure 5.1a and figure 5.1b we see that the running time of a query to the
BIS data structures, for a fixed n, increases linear to the amount of points
returned. This agrees with the theoretical running time of O(lgn + k · lgε n).
The theoretical O(lgε n) is the worst-case amount of jumps from a any given
node to a leaf. On figure 5.1b we notice that around size ≈ 150 the graph
changes its slope. The slope decreases which means that the running time
per point decreases. This means that the average amount of jumps per point
reported can change, but will naturally always be bounded by the worst-case
of lgε n. Other factors may have a say in the change of slope as well. Some of
these factors will be mentioned in section 5.5.
As expected, the average amount of points reported from a lot of search queries
with q = [x, x+

√
size ·

√
n]× [y, y +

√
size ·

√
n] were size or size− 1. When√

size ·
√
n is a floating point number it will be rounded down to the nearest

integer.

The graphs on figure 5.1a and figure 5.1b show the time of a search query
to the BIS data structure compared to the time of a search query to the kd-
tree. The shape of the search query is a square. The variable size increments
in levels of 5 per iteration of the experiment and will have a maximum of√
n

2 . The x-axis of the graphs describes the size variable in the expression
A =

√
n ·
√
size ×

√
n ·
√
size. Examining figure 5.1a we see that when the

shape of the search query is a square, the search query to the kd-tree is always
performing better than the search query to the BIS data structure. Looking
closer at the figure we notice that while the search query to the BIS data
structure performs worse, it is not that bad. At size = 180 we have window
of size

√
217 ·

√
180 ×

√
217 ·

√
180 = 4857.26 × 4857.26. The time to perform

the search query on the BIS data structure at size = 180 is 15.9 microseconds,
while the search to the kd-tree takes 5.2. This search query includes 180 points.
This is a relatively big query and the time to perform the search query on the
BIS data structure is only a factor 3 worse than the time of the search query
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on kd-tree.
Examining figure 5.1b with n = 225 the largest search window has become

quite large with a size of
√

225 ·
√

2895×
√

225 ·
√

2895 = 311673× 311673. The
biggest window now returns 2895 points. A search query with this size to the
BIS data structure and the search query to the kd-tree has a factor 386

24 = 16.1
difference. This a quite big difference in the search time, but it is also a big
search query.

It is obvious from the graphs that the kd-tree performs better when the
search queries are square windows. Since lgε n and lgn are fixed, the time of a
search query to the BIS data structure grows linearly to the size of the window,
just like a query to the kd-tree, but with a bigger slope. This means we will
not run into an unexpected growth when asking for more points from the BIS
data structure.

The biggest search query at n = 217 is
√

180 · n ×
√

180 ·
√
n. We now fix

size = 100 ≤ 180 and see how the ratio between the search query to the BIS
data structure and kd-tree will evolve when n grows. We see this on figure 5.2.
The graph is growing and thus the running time of a search query to the BIS
data structure grows faster than same search query to the kd-tree when n is
growing. This is to be expected since we pay O(k ·lgε n) compared to O(k). The
ratio grows from 2.3 to 5.5 when lgn grows from 17 to 25. This is not a huge
increase in ratio taking into account that n grows by a factor of 225

217 = 28 = 256.

(a) n = 217 with
√
n = 362. (b) n = 225 with

√
n = 5792.

Figure 5.1: Square search on BIS and kd-tree.
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Figure 5.2: Ratio between a square search query to the kd-tree and BIS data
structure with constant size = 100. Ratio describes how much better the kd-
tree performs.
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5.2 Vertical and horizontal slices

In this section we are going to compare the performance of the BIS data struc-
ture and the performance of the kd-tree when the search query is in the shape
of a slice. We define a slice to be a search query which covers the entirety of
the search space in one dimension while only covering a small part of the search
space in the other dimension. Since a slice is a search query with the form of
either qh = [0, n− 1]× [y1, y2] or qv = [x1, x2]× [0, n− 1] we omit [0, n− 1] and
define the size of the slice to be |y2 − y1| or |x2 − x1|. A slice which extends
through the entirety of the x-dimension is called a vertical slice. A slice which
extends through the entirety of the x-dimension is called a horizontal slice. Both
the x-coordinates and y-coordinates of the points generated are unique which
means that a slice of size k will always return k points as the result.

5.2.1 Setup

A search query to the kd-tree has a query time of O(
√
n+k) and a search query

to the BIS data structure has a query time of O(lgn+ k · lgε n). We expect the
query time of a slice to the BIS to be faster than the query time of a slice to the
kd-tree when k is small. When k grows the query to the kd-tree will eventually
become faster. When increasing the size of a slice, we expect the query time of
the two search queries to be roughly equal at k ≈

√
n−lgn

lgε n−1 . This originates from
√
n + k = lgn + k · lgε n ⇔ k =

√
n−lgn

lgε n−1 . We call this theoretical intersection
point between the running times for kt. The O(lgε n) bounds the amount of
jumps needed to perform in order to find the identity of a leaf given the identity
of a ball in the ball inheritance structure. lgε n intuitively describes the amount
jumps a ball uses to travel from a node to a leaf. Thus, in this analysis lgε n will
be the average amount of jumps per result, as measured by the results in the
experiments. For example, if the ball-inheritance structure has used 10 jumps
to locate 4 leaves, lgε n = 10

4 = 2.5. We use this measured lgε n instead of the
theoretical lgε n because the theoretical is used to bound the amount of jumps,
not count them. Thus, in kt we will let lgε n describe the average amount of
jumps taken by each point reported back as a result of the query, measured by
the experiments.

Recall that the BIS data structure treats the two dimensions very differently.
Given a rank space search query q = [x1, x2] × [y1, y2], the search query will
find the least common ancestor of x1 and x2. From there, it will find the path
to both x1 and x2 and all leaves between them will be in the range [x1, x2].
The search algorithm now has to determine which of these leaves contain a
point with y-coordinate in [y1, y2]. This is done by using the ball inheritance
structure from each of the fully contained nodes which were found on the path
from the least common ancestor to x1 and x2.

A horizontal slice includes all x-coordinates of the search space, and thus the
least common ancestor of [x1, x2] will be the root of the tree. The path from the
least common ancestor to x1 will only go left which means each level will have
one fully contained node. The path from the least common ancestor to x2 will
only go right, also yielding one fully contained node per level. The experiments
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measure the difference in performance between the BIS data structure and the
kd-tree when the search query is a slice. A slice will start out being very small,
k = 5. Thus, many of the fully contained nodes will have no ball inheritance
work when the slice is a horizontal slice. As the slice grows, eventually more and
more node will have one or more balls to follow. The amount of ball inheritance
each node is responsible for varies a lot, and therefore the ball inheritance will
become somewhat sporadic. But the nature of the ball distribution asserts that
if node has two or more balls for ball inheritance, these balls will be right next
to each other.

On the other hand we have the vertical slices. The vertical slice includes all
y-coordinates of the search space, and thus the location of the least common
ancestor of [x̂1, x̂2] varies a lot dependent on the search query. But the nodes
which are marked as fully contained on the path from the least common ances-
tor to x̂1 and x̂2 will all only contain leaves with points with y-coordinates in
[y1, y2] which means we have to do ball inheritance on all the balls belonging
to fully contained nodes. Thus, the ball inheritance in vertical slices are much
more batched together. Comparing a vertical and horizontal slice of the same
size, the vertical slice will have good chances of being faster than the horizontal
slice. With a least common ancestor closer to the leaves, the ball inheritance in
the vertical slice will have to jump from a lower level than the ball inheritance
in the horizontal and the balls are more batched together in the vertical.

We are going to look at how well the vertical and horizontal slices perform
on both the BIS data structure and the kd-tree. We are interested in seeing
how big the slices can become before the search query to the BIS data structure
performs worse than the search query to the kd-tree. We are going to look at
the vertical slices first. Below are some graphs showing the running time of a
search query to both the BIS and the kd-tree dependent on the size of the slice.

5.2.2 Vertical slices

Figure 5.3a and figure 5.3b show the performance of a search query to the BIS
data structure compared to a search query to the kd-tree, where the search
query is a vertical slice. Figure 5.3a shows that the BIS data structure is faster
than the kd-tree up until the size of the slice is 200. That is quite significant.
Not only is the BIS data structure faster when k ≤ 200, but at k = 100 it is
approximately twice as fast as the kd-tree. There is a sudden change in the
slope of the graph at around k ≈ 250 which will be addressed in section 5.5.
On figure 5.3b we see that the BIS data structure is faster than the kd-tree up
to a size of 4660. That is big query. At k = 100 the BIS data structure is 27
times faster than the kd-tree. At k = 200 the BIS data structure is 14 times
faster than the kd-tree. These are significant differences in performance.

We just pointed out that the graphs on figure 5.3a intersect at k = 200 and
the graphs on figure 5.3b intersect at k = 4660. Figure 5.4a shows the size (k)
of the slice at the point of intersection between the running-time of a search
to the BIS and the kd-tree for each n tested. Recall the theory above where it
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(a) n = 217 (b) n = 225

Figure 5.3: Vertical slice on BIS and kd-tree.

was described how the intersection point should theoretically be kt =
√
n−lgn

lgε n−1 .
Figure 5.4b shows km

kt
, where km is the amount of results measured by the

experiments. The graph is plotted using lgε n as the average jumps per result
as measured by the experiments. We want this graph to as close to a flat line
as possible. It does not really matter where on the y-axis the flat line lies,
because both the numerator and denominator of kt has hidden constants in the
O-notation. We notice that the graph lies steadily around 1 meaning that it
is a stable relationship. Figure 5.4a has a exponential tendency. That is to be
expected since the x-axis is lgn which means that n grows by a factor of 2 each
step on the x-axis and then the point of intersection between the two running
times increases by approximately

√
2. This is because of the O(

√
n) part from

the running time of a search query to the kd-tree. Obviously,
√
n grows by a

factor of
√

2 when n grows by a factor of 2, which is exponential. A search
query in the shape of a slice is the worst-case scenario for the kd-tree.
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(a) Point of intersection between BIS and kd-tree. (b) Point of intersection normalized by theoretical k

Figure 5.4: Vertical slice on BIS and kd-tree.
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5.2.3 Horizontal slices

We are now going to look at the graphs for the horizontal slices. Recall that
when a search query is a horizontal slice, the least common ancestor will be
the root of the tree. In [x1, x2], x1 will be the leftmost leaf and x2 will be the
rightmost leaf. From the root to x1 and x2 there will many fully contained
nodes, 2 per level to be exact, which means there will be many different nodes
performing small amount of balls inheritance look-ups. The y-coordinates of
the points are uniformly distributed. Thus, unlike the vertical shape, we cannot
say anything definitively about where the ball-inheritance takes place.

Figure 5.5a and figure 5.5b show the performance of a search query to the
BIS data structure compared to a search query to the kd-tree, where the search
query is a horizontal slice. Figure 5.5a shows that the BIS data structure is
faster than the kd-tree until the size of the slice becomes 125. While not as
good as the vertical slice, it is still a decent size. At k = 100 the BIS data
structure is only a factor 1.2 faster than the kd-tree. On figure 5.5b we see that
the BIS data structure is faster than the kd-tree up until k = 2290. At k = 100
the BIS data structure is 13 times faster than the kd-tree, and at k = 200 it
is 8 times faster. Again, this is not as good as the vertical slice, but it is still
quite significant. Given a query with 200 results in a horizontal slice, the BIS
data structure outperforms the kd-tree by a factor of 8. It is obvious for both
the horizontal and the vertical slice, that the smaller the window, the bigger
the ratio between the performance of the two data structures.

(a) n = 217 (b) n = 225

Figure 5.5: Horizontal slice on BIS and kd-tree.

Figure 5.6a shows the size (k) of the slice at the point of intersection be-
tween the running-time of a search to the BIS and kd-tree for each n tested.
Figure 5.6a is a little more messy than figure 5.4a. At figure 5.6b the graph
crosses above and below 1, but keeps rather close to 1. Again, we are looking for
a graph that is as flat as possible in order to show that is a stable relationship.
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In the big perspective, this graph certainly shows a stable relationship around
1. Just as before, the lgε n in kt is the average amount of jumps per result
measured by the experiments. While the horizontal slice is not as good as the
vertical slice, it is still very good. It definitely outperforms the kd-tree up to a
good size.

(a) Point of intersection between BIS and kd-tree. (b) Point of intersection normalized by theoretical k

Figure 5.6: Horizontal slice on BIS and kd-tree.

47



5.3 Slices with small k

In this section we are going to look at slices with k ≤ 200. We will only focus
on vertical slices. We are interested in seeing how much faster the BIS data
structure is than the kd-tree when looking at amount of results which seems
reasonable to user interaction. Figure 5.7a figure 5.7b show the performance
a search query to the BIS data structure compared to a search query to the
kd-tree, where k ≤ 200 for vertical slices.

(a) Data set of size n = 217. (b) Data set of size n = 225.

Figure 5.7: Vertical slice on BIS and kd-tree.

The running time of a slice to the BIS data structure where k ≤ 200 is
noticeably better than the running time of a slice to the kd-tree. There is a
great gap between the graph of the two running-times. The figures show that
the BIS data structure always performs better when the size of the slice is
below 200. Seeing this tendency, we are then also interested in testing just how
much better the BIS data structure performs. We are going to measure this
by looking at the ratio between the performance of the BIS data structure and
the performance of the kd-tree. We see this on figure 5.8a and figure 5.8b. The
ratios describes how much better the BIS data structure is than the kd-tree in
terms of running time: Bigger is better. As mentioned in section 5.2, the ratio
between the performance of the BIS data structure and the kd-tree is strictly
decreasing as the size of the slice is increasing. Thus, the smaller the slice, the
bigger the ratio between performances of the data structures. On figure 5.2
we plotted the ratio between a square query to the kd-tree and a square query
to the BIS data structure in order to find out how much better the kd-tree
performed. Now the roles are reversed.

Looking at figure 5.8a and figure 5.8b we notice that the ratio between the
two running times at size = 100 increases from 2 to 27 as n increases from 217

to 225. A factor of 27 is the difference between the vertical slice to the BIS data
structure and a vertical slice to the kd-tree with size = 100. With size = 200
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(a) Data set of size n = 217. (b) Data set of size n = 225.

Figure 5.8: Ratio between running time of slice on BIS and kd-tree with fixed
n.

the ratio between the two data structures increases from just above 1 to 14. A
factor 14 is a big difference. We see that when the size of the slice is constant
and n is growing, the ratio between a slice to the BIS data structure and the
kd-tree increases. On figure 5.8b we also notice that when 1 ≤ k ≤ 50 the ratio
is between 73 and 42. Thus, given a big data set and a small vertical slice the
BIS data structure will significantly outperform the kd-tree. This fits well with
the theory where the kd-tree has the worst-case of O(

√
n) and the BIS data

structure is more stable in respect to its shape. We will investigate this further.
Looking back to the section about the square windows we remember that

a window with the dimensions
√
n · size ×

√
n ·
√
size is expected to return

size points as result. This was based on the area of area of the search query.
Thus, we can rewrite the expression as follows:

√
n · size ×

√
n ·
√
size =√

n ·
√
n×
√
size ·

√
size = n× size. This is exactly what vertical or horizontal

slice looks like. Thus, we know that these two types of queries are expected
to return the same amount of points and we can therefore compare the square
search query with a horizontal or vertical slice to see how much of an impact
the shape of the search has for the BIS data structure. Since both shapes of a
search query is expected to return size points when the size of the search query
is size, which is why we can use the variables k and size interchangeably in
this analysis.

We pick size = {50, 100, 150} from both the square experiments and the slice
experiments to see how changing the shape of the query affects the running time
of the query to the BIS data structure. The graphs on figure 5.10a, figure 5.9a
and figure 5.10b show some similarities. The vertical slice is clearly the fastest.
The horizontal slice performs worse than the vertical slice. The squared search
query seems to be the worst-case scenario for the BIS data structure. But
looking at only the squared search across the three graphs we see that it growing
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with a rather linear tendency. We would expect as much from the theory
because if we fix k in O(lgn + k · lgε n) we only have lgn and lgε n growing.
Since lgn increases by 1 and O(lgε n) is a bound for the amount of jumps
performed, this ties rather well to the theory. Looking at these three graphs,
we suspect that the square search is the worst case of a search query to the BIS
data structure, while both the horizontal and vertical slice searches are special
cases performing even better. Thus, when we fix k and let n grow, the time
required to find k points with a search query to the BIS data structure seems
to be bound by the running time of the square search.

(a) Queries to the BIS data structure with size = 100. (b) Queries to the kd-tree with size = 100.

Figure 5.9: Comparison of shapes on BIS and kd-tree.

(a) Queries to the BIS data structure with size = 50. (b) Queries to the BIS data structure with size = 150.

Figure 5.10: Comparison of shapes on BIS.
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We look at figure 5.9b in order to confirm that changing the shape from a
square to a slice impacts the running time of the search query to kd-tree very
much. Comparing figure 5.9a and figure 5.9b we see that the difference between
the two shapes of search queries are much, much bigger on the kd-tree than on
the BIS data structure. The biggest ratio between the vertical slice and the
square search on figure 5.9a is around 4 at lgn = 25. The biggest ratio between
the slice and square search on figure 5.9b is around 53 at lgn = 25. That is
really a noticeable difference. Thus, when a search query is performed on the
BIS data structure we can expect a much more stable running time. The BIS
data structure is more resilient to changes in the shape of the search query
than the kd-tree. Figure 5.10a and figure 5.10b shows the same tendency as
figure 5.9a: A stable relationship between the square search and slice search
with a maximum factor of 4 in difference, at lgn = 25. Notice that the ratio
between best-case and worst-case search queries on all four figures grow as n
grows. The ratio between the worst-case and best-case search queries to the
BIS data structures grows much slower than the kd-tree.

5.4 Different BIS data structures with B varying

So far we have only looked at the BIS data structure with B = d1
2 lg

1
3 ne. For

n ∈ [217, 225] this is B = 2. We have also not yet mentioned the important
aspect of how much main memory the BIS data structure uses compared to
the kd-tree. In this section we are going to look at the BIS data structure for
n ∈ [217, 225] and B = 2, 3, 4 and show how much space it uses and compare
it to the space used by the kd-tree. When B grows in the BIS data structure,
we expect space to drop, but the query time of a range query to grow. We are
going to briefly look at how the BIS data structure performs with B = {3, 4}.

(a) Vertical query with size = 50. (b) Vertical query with size = 100.

Figure 5.11: BIS with B = {2, 3, 4}.
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Figure 5.11a and figure 5.11b show how B impacts the running time of a
vertical slice query to the BIS data structure with size fixed. Since B directly
impacts where in the ball-inheritance structure big jumps will be located and
how big the jumps are, we expect the query time to be slower when B grows.
However, both graphs show that the query time of a vertical slice is faster when
B = 4 than when B = 3. This is probably due to the big jump at level 4. But
in general, when B grows, the average amount of jumps per result is expected
to grow. When lgε n grows, the time to find k results grows.

The most important reason why the range tree is not used as the standard
range reporting data structure today is its space complexity. While we have
shown theoretically that the space complexity of the BIS data structure is linear,
we would also like to see it in practice. Figure 5.12 shows the actual space usage
of the BIS data structure with B = {2, 3, 4} and the space usage of the kd-tree.
The size has been normalized by the amount of points the data structure holds.
Thus, the normalized size of the kd-tree is 2, meaning that for each point in
the kd-tree it uses 2 · 32 bits - one 32 bits integer for each coordinate. As we
expected, the size of the BIS data structure decreases when B grows.

Figure 5.12: The normalized sizes of the BIS data structure with B = {2, 3, 4}
and the kd-tree.
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An interesting thing to remember is that the size of the kd-tree is entirely
dependent on the data type used to represent each coordinate. In our exper-
iments we have used a 32 bit unsigned integer. If we were to change that to
a 64 bit unsigned integer, the size of the kd-tree would increase by a factor of
2. As the kd-tree, the BIS data structure uses 2 words per point to store the
coordinates. The BIS data structure also uses 1 word per point to store the
y-coordinates in a sorted list as to allow for binary search to find ŷ1 and ŷ2.
The rest of the BIS data structure are no dependent on the data type used to
represent the coordinates. Thus, changing the data type from a 32 bit integer
to a 64 bit integer would only increase the total space usage by 3 32-bit integers
per point. On figure 5.12 the size of the BIS data structure with B = 2 and
lgn = 25 is 8. Increasing that to 11 would increase the space usage of the BIS
data structure by a factor of 11

8 = 1.375.
The BIS data structure with B = d1

2 lg
1
3 ne = 2 and lgn ≤ 25, we get a

good performance with certain queries and a better stability when changing
the shapes of the search queries compared to the kd-tree.

5.5 Vertical slices explained
In this section we are going to dive a deeper into the technical details of the
results seen in some of the previous sections. The figures depicting the perfor-
mance of the vertical slices showed some interesting tendencies. This is the last
section before the summary.

Figure 5.13: Vertical slice. data set size of n = 220.
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(a) Data set with size = 217. (b) Data set with size = 220.

Figure 5.14: Size of jumps. ’Average jumps’ is the average of all the jumps
performed normalized by the size of the slice.

(a) Data set with size = 217. (b) Data set with size = 220.

Figure 5.15: Level of highest fully contained node.
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On the graphs showing the performance of the vertical slices to the BIS data
structure, there is a very noticeable change in slope at around k = 256. Since
B = 2, we have a big jump at level 23 = 8 which allows the ball inheritance
structure to jump from level 8 to a leaf in one jump. When jumping from level
8 instead of 5, 6 or 7 the ball reaches the leaf in one jump instead of two or
three. This means that the average amount of jumps per result will decrease
and thus the running time will not increase as fast as before.

Figure 5.14a and figure 5.14b show the average amount of jumps per result,
i.e. the sum of all jumps divided by k. We see how the graph has a local
maximum at around k = 256 and then the average amount of jumps per re-
sult decreases until k = 512 where it starts increasing at steady level again.
Figure 5.15a and figure 5.15b describes the highest level of a fully contained
node. We see between k = 256 and k = 512 that the maximum is level 8 and
the minimum is level 7 and that the average level increases meaning more and
more fully contained node starts using level 8. Since we have B = 2, there
is a 2-jump every 2 levels, a 4-jump every 4 levels, an 8-jump every 8 levels
and a 16-jump every 16 levels. This means that at level 7 the ball inheritance
structure needs 3 jumps to reach a leaf. This is why such a noticeable local
maximum exists on figure 5.14a and figure 5.14b. The jumps per results eases
off because from level 8 there is 1 jump, from level 9 there are 2 jumps and from
level 10 there are 2 jumps. The graph on figure 5.14a also shows that when
2i ≤ k ≤ 2i+1 the maximum level of the highest fully contained node is i and
the minimum level of the highest fully contained node is i− 1. Recall that the
way the vertical slices work means that if a node is fully contained then all of
the balls in the node’s list will be followed.

We have seen a great increase in performance when the size of the slice is
big enough to use the big jump at level 8. This will also happen if the big jump
at level 16 is used, but that would require a big search query. We have omitted
the technical details of the horizontal slices since that would be too technical.
But it is interesting to note that the BIS data structure treats a vertical slice
in a different way than the horizontal slice.

5.6 Summary

In this chapter we have presented the results of different experiments on the BIS
data structure. We have compared it to the kd-tree. We have also confirmed
that the practical use of the BIS data structure fits well with the theory.

The BIS data structure performs very well when a search query is shaped like
a slice, most notably as a vertical slice. A square search query does not perform
as well as a slice does on the BIS data structure. However the square search
query is not a disaster on the BIS data structure. We noticed the difference
in performance between the square and slice-formed search query to the BIS
data structure was not as big as the difference in performance between the two
shapes on the kd-tree. The worst kind of search query to the kd-tree was a slice
and the best was a square - the exact opposite of the BIS data structure.

The kd-tree is much more dependent on the shape of its search query than
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the BIS data structure. This is most notable by looking at the difference be-
tween figure 5.9a and figure 5.9b.
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Chapter 6

Conclusion

“Hell... It’s about time."
— Tychus Findlay, Starcraft II

In this thesis we have presented the theory and performance of the BIS
data structure. We have compared the performance of the BIS data structure
to that of the kd-tree. The performance of the BIS data structure corresponds
well with the theoretical running time of O(lgn + k · lgε n). It does not seem
like the theoretical query time has any hidden big constants like we assumed
the OBIS data structure had.

We have seen that, just like the kd-tree, the BIS data structure has a worst-
case search query and a best-case search query. The difference in execution time
between the worst-case and best-case search query to the BIS data structure
is much less than that of the kd-tree. We have seen that the search query to
the BIS data structure performs much more stable than a search query to the
kd-tree when the shape of the search query changes.

Given a search query in the shape of slice, the BIS data structure will
outperform the kd-tree up to good size. With 217 points and a vertical search
query, the BIS data structure will outperform the kd-tree when k is less than
200. With 225 points and a vertical search query, the BIS data structure will
outperform the kd-tree when k is less than 4660.

For smaller sizes of k, a vertical query to the BIS data structure will be
several times faster than the kd-tree. With 217 points and a vertical search
query, the BIS data structure will be 3.5 times faster than the kd-tree when
k = 50. With 225 points the BIS data structure will be 42 times faster than
the kd-tree when k = 50. In general the BIS data structure performs pretty
well for when k is small. The BIS data structure can definitely outperform the
kd-tree in many cases.

There is a duality between the shapes of the search queries to the BIS data
structure and the kd-tree. The BIS data structure performs best with slices
and the kd-tree performs best with square searches. The BIS data structure
performs worst with the square search and the kd-tree performs worst with a
slice.

We have seen that the BIS data structure actually does compete with the
kd-tree. The BIS data structure could be a realistic alternative to the kd-tree
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in practice. The BIS data structure uses several factors more space than the
kd-tree. By picking an ε and a c for B = c · lgε n we are able to leverage the
performance of the BIS data structure with the amount of main memory it
should be able to use.
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